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Adaptive Immunity to SARS-CoV-2
(T and B cells)

2020; Radermecker et al., 2020; Schurink et al., 2020). In
contrast, end-stage disease is not generally associated with
preferentially elevated T cell abundance in lung tissue (Liao
et al., 2020; Oja et al., 2020; Szabo et al., 2020), consistent
with a working model that early adaptive immune responses
are very beneficial, and late adaptive immune responses are sim-
ply too late (Figure 2C).
We describe one parsimonious working model of immune re-

sponses in COVID-19 in Figure 2, consistent with much of the
available literature. However, these are still very active areas of
investigation, and there are plausible alternative models as
well, which are discussed below. The overall amount of data
for the details of antigen-specific adaptive immune responses
in acute COVID-19 infections remains limited; nevertheless, the
ongoing pandemic, with well over 1 million deaths to date, re-
quires rapid interpretation of the available data. This working
model provides a useful framework and reference point to start
from. Below, we provide a detailed discussion of the facets of
adaptive immunity to COVID-19.

Adaptive immunity to SARS-CoV-2 infection
Humans make SARS-CoV-2-specific antibodies, CD4+ T cells,
and CD8+ T cells in response to SARS-CoV-2 infection (Grifoni
et al., 2020; Krammer, 2020; Stephens and McElrath, 2020)
(Figure 1). Antibodies, CD4+ T cells, and CD8+ T cells can each
have protective roles in controlling viral infections, but those
roles and the importance of each component of adaptive immu-
nity varies depending on the viral infection. In some infections,
one of the three branches of adaptive immunity is critically
important for control of the viral infection and survival of the
host. For other viral infections, there is a high degree of synergy
and redundancy between the branches of adaptive immunity, re-
sulting in more paths to successful control of an infection and
robust immunity. For these reasons, it is important to measure
antigen-specific CD4+ T cells, CD8+ T cells, and antibodies in
the same individuals, to avoid the problems illustrated in the
classic blindfolded men and the elephant allegory.

CD4+ T cells
T cell responses are detected after almost all SARS-CoV-2 infec-
tions (Grifoni et al., 2020; Rydyznski Moderbacher et al., 2020;
Peng et al., 2020; Sekine et al., 2020). CD4+ T cell responses
to SARS-CoV-2 are more prominent than CD8+ T cell responses
(Grifoni et al., 2020; Sekine et al., 2020) and have been associ-
ated with control of primary SARS-CoV-2 infection (Rydyznski
Moderbacher et al., 2020). CD4+ T cells more so than CD8+

T cells were associatedwith control of SARS-CoV infection in an-
imal models (Chen et al., 2010; Zhao et al., 2016). T cells specific
to any viral protein can be relevant for protective immunity.
Nevertheless, there is particular interest in T cell responses
against SARS-CoV-2 Spike protein (‘‘Spike’’), because almost
all candidate COVID-19 vaccines exclusively contain Spike
(Krammer, 2020). Additionally, induction of anti-Spike antibodies
depends on Spike-specific CD4+ T cells, with possible contribu-
tions of CD4+ T cells specific for other virion structural proteins
(Crotty, 2015; Elsayed et al., 2018). In a study examining CD4+

T cell responses to all SARS-CoV-2 proteins in convalescent
COVID-19 cases, responses were detected against almost all

Figure 2. An integrated working model of COVID-19 immunology
and disease severity
Immune response trajectories in COVID-19. Conceptual schematics of the
kinetics of immune responses to SARS-CoV-2 under conditions of average
COVID-19 (non-hospitalized cases) and severe or fatal COVID-19. ‘‘Innate
immunity’’ line specifically refers to the peak kinetics of innate cytokines and
chemokines detectable in blood; innate immune responses occur locally
throughout the course of an infection. ‘‘T cells’’ refers to virus-specific CD4+

and CD8+ T cells. ‘‘Antibodies’’ refers to virus-specific neutralizing antibodies.
Arrows indicate a time point with important differences in the presence or
absence of T cell responses and the magnitude of the viral load, comparing (B)
and (C).
(A) An example of a generic viral infection.
(B) Average SARS-CoV-2 infection.
(C) Severe or fatal SARS-CoV-2 infection. The period of severe COVID-19
clinical disease is shaded gray.
See also Figure S1 for additional features.
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immune system, and (3) priming the adaptive immune response.
The first two activities of the innate immune system slow down
the viral replication and spread. The third is a critical requirement
of the innate immune system to trigger the adaptive immune
response. Adaptive immune responses are slow due to the
intrinsic requirement of selecting and expanding virus-specific
cells from the large pools of naive B cells and T cells specific
for different molecular structures and sequences (>109 cells
each). Adaptive immune responses take time to generate suffi-
cient cells to control a viral infection, !6–10 days after priming
(Figure 2A), due to the inherent time demands for extensive pro-
liferation and differentiation of naive cells into effector cells. Once
sufficient populations of effector T cells (helper T cells and cyto-
toxic T cells) and effector B cells (antibody secreting cells, known
as plasmablasts and plasma cells) have proliferated and differ-
entiated, they often work together to rapidly and specifically
clear infected cells and circulating virions.

In a SARS-CoV-2 infection, the virus is particularly effective at
avoiding or delaying triggering intracellular innate immune re-
sponses associated with type I and type III IFNs in vitro
(Blanco-Melo et al., 2020) and in humans (Arunachalam et al.,
2020; Bastard et al., 2020; Blanco-Melo et al., 2020; Laing
et al., 2020). Without those responses, the virus initially repli-
cates unabated and, equally importantly, the adaptive immune
responses are not primed until the innate immune alarms occur
(Figure 2B). In an average case of COVID-19, a simple model is
that temporal delay in innate immune responses is enough to
result in asymptomatic infection (!40% of SARS-CoV-2 infec-
tions are asymptomatic) (Oran and Topol, 2020) or clinically
mild disease (‘‘mild’’ is a COVID-19 clinical definition meaning
not requiring hospitalization) because the T cell and antibody re-
sponses occur relatively quickly and control the infection
(Figure 2B). The presence of T cells and antibodies is associated
with successful resolution of average cases of COVID-19 (Grifoni
et al., 2020). Studies of acute and convalescent COVID-19 pa-
tients have observed that SARS-CoV-2-specific T cell responses
are significantly associated with milder disease (Liao et al., 2020;
Rydyznski Moderbacher et al., 2020; Sekine et al., 2020; Zhou
et al., 2020b), suggesting that T cell responses may be important
for control and resolution of a primary SARS-CoV-2 infection.
These topics are discussed in detail in later sections.

Ineffective IFN innate immunity has been strongly associated
with failure to control a primary SARS-CoV-2 infection and a
high risk of fatal COVID-19, accompanied by innate cell immuno-
pathology and a plasma cytokine signature of elevated CXCL10,
interleukin (IL)-6, and IL-8 in many studies (Aid et al., 2020; Kuri-
Cervantes et al., 2020; Li et al., 2020b; Lucas et al., 2020; Rader-
mecker et al., 2020; Schurink et al., 2020; Del Valle et al., 2020).
Impaired and delayed type I and type III IFN responses are asso-
ciated with risk of severe COVID-19 (Galani et al., 2021; Hadjadj
et al., 2020). The risk of a poor early innate immune response to
SARS-CoV-2 is highlighted by the striking findings of very high
risk of severe or fatal COVID-19 in individuals with defective
type I IFN responses (Bastard et al., 2020; Zhang et al., 2020).
If the innate immune response delay is too long—because of
particularly efficient evasion by the virus, defective innate immu-
nity, or a combination of both—then the virus (1) gets a large
head start in replication in the upper respiratory tract (URT)
and lungs, and (2) fails to prime an adaptive immune response
for a long time, resulting in conditions that lead to severe enough
lung disease for hospitalization (Figure 2C). These factors can be
amplified by challenges of age, as elderly individuals have a
smaller naive T cell pool and are therefore more likely to struggle
to make a T cell response quickly that can recognize this new vi-
rus (Rydyznski Moderbacher et al., 2020), which also likely re-
sults in hampered neutralizing antibody responses, because
neutralizing antibody responses are generally T cell-dependent.
If the adaptive immune response starts too late, fatal COVID-

19 appears to be a situation where viral burden is high (Magleby
et al., 2020) in the absence of a substantive adaptive immune
response (Figure 2C). It is plausible that the innate immune sys-
tem tries to fill the vacuum left by the absence of a T cell
response, attempting to control the virus with an ever-expanding
innate immune response. That solution ends up untenable, as a
massive innate response results in excessive lung immunopa-
thology. This conclusion is consistent with many studies finding
innate cytokine/chemokine signatures of immunopathology
(cited above), and particularly observation of elevated fre-
quencies of neutrophils (the most common cell type of the innate
immune system) in blood (Kuri-Cervantes et al., 2020), and
massive numbers of neutrophils in lungs, associated with se-
vere, end-stage COVID-19 disease (Li et al., 2020b; Liao et al.,

Figure 1. The major components of adaptive immunity in viral immune responses
Virus-specific CD4+ T cells, CD8+ T cells, and antibodies (produced by B cells) constitute the three major components of acute adaptive immunity to a viral
infection. Immune memory consists of memory B cells, antibodies, virus-specific CD4+ T cells, and virus-specific CD8+ T cells constitute the four major com-
ponents of immune memory to a viral infection.
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2020; Radermecker et al., 2020; Schurink et al., 2020). In
contrast, end-stage disease is not generally associated with
preferentially elevated T cell abundance in lung tissue (Liao
et al., 2020; Oja et al., 2020; Szabo et al., 2020), consistent
with a working model that early adaptive immune responses
are very beneficial, and late adaptive immune responses are sim-
ply too late (Figure 2C).
We describe one parsimonious working model of immune re-

sponses in COVID-19 in Figure 2, consistent with much of the
available literature. However, these are still very active areas of
investigation, and there are plausible alternative models as
well, which are discussed below. The overall amount of data
for the details of antigen-specific adaptive immune responses
in acute COVID-19 infections remains limited; nevertheless, the
ongoing pandemic, with well over 1 million deaths to date, re-
quires rapid interpretation of the available data. This working
model provides a useful framework and reference point to start
from. Below, we provide a detailed discussion of the facets of
adaptive immunity to COVID-19.

Adaptive immunity to SARS-CoV-2 infection
Humans make SARS-CoV-2-specific antibodies, CD4+ T cells,
and CD8+ T cells in response to SARS-CoV-2 infection (Grifoni
et al., 2020; Krammer, 2020; Stephens and McElrath, 2020)
(Figure 1). Antibodies, CD4+ T cells, and CD8+ T cells can each
have protective roles in controlling viral infections, but those
roles and the importance of each component of adaptive immu-
nity varies depending on the viral infection. In some infections,
one of the three branches of adaptive immunity is critically
important for control of the viral infection and survival of the
host. For other viral infections, there is a high degree of synergy
and redundancy between the branches of adaptive immunity, re-
sulting in more paths to successful control of an infection and
robust immunity. For these reasons, it is important to measure
antigen-specific CD4+ T cells, CD8+ T cells, and antibodies in
the same individuals, to avoid the problems illustrated in the
classic blindfolded men and the elephant allegory.

CD4+ T cells
T cell responses are detected after almost all SARS-CoV-2 infec-
tions (Grifoni et al., 2020; Rydyznski Moderbacher et al., 2020;
Peng et al., 2020; Sekine et al., 2020). CD4+ T cell responses
to SARS-CoV-2 are more prominent than CD8+ T cell responses
(Grifoni et al., 2020; Sekine et al., 2020) and have been associ-
ated with control of primary SARS-CoV-2 infection (Rydyznski
Moderbacher et al., 2020). CD4+ T cells more so than CD8+

T cells were associatedwith control of SARS-CoV infection in an-
imal models (Chen et al., 2010; Zhao et al., 2016). T cells specific
to any viral protein can be relevant for protective immunity.
Nevertheless, there is particular interest in T cell responses
against SARS-CoV-2 Spike protein (‘‘Spike’’), because almost
all candidate COVID-19 vaccines exclusively contain Spike
(Krammer, 2020). Additionally, induction of anti-Spike antibodies
depends on Spike-specific CD4+ T cells, with possible contribu-
tions of CD4+ T cells specific for other virion structural proteins
(Crotty, 2015; Elsayed et al., 2018). In a study examining CD4+

T cell responses to all SARS-CoV-2 proteins in convalescent
COVID-19 cases, responses were detected against almost all

Figure 2. An integrated working model of COVID-19 immunology
and disease severity
Immune response trajectories in COVID-19. Conceptual schematics of the
kinetics of immune responses to SARS-CoV-2 under conditions of average
COVID-19 (non-hospitalized cases) and severe or fatal COVID-19. ‘‘Innate
immunity’’ line specifically refers to the peak kinetics of innate cytokines and
chemokines detectable in blood; innate immune responses occur locally
throughout the course of an infection. ‘‘T cells’’ refers to virus-specific CD4+

and CD8+ T cells. ‘‘Antibodies’’ refers to virus-specific neutralizing antibodies.
Arrows indicate a time point with important differences in the presence or
absence of T cell responses and the magnitude of the viral load, comparing (B)
and (C).
(A) An example of a generic viral infection.
(B) Average SARS-CoV-2 infection.
(C) Severe or fatal SARS-CoV-2 infection. The period of severe COVID-19
clinical disease is shaded gray.
See also Figure S1 for additional features.

ll

Cell 184, February 18, 2021 863

Review



Viral evolution of SARS-CoV-2
(How to generate an assessment tool for public health risk of newly arising SARS-CoV-2 variants)
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High density peptide arrays (HDPA) to map epitopes (PEPperPRINT)
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FIGURE 1 | Study overview and statistical analysis workflow: SARS-CoV-2 proteome-wide IgG and IgA epitope mapping. (A) The proteome of SARS-CoV-2 was
translated in 15-mer overlapping peptides with a peptide-to-peptide overlap of 13 amino acids. The resulting 4,883 individual peptides were printed in duplicates on
the microarray. Sera from confirmed COVID-19 patients and SARS-CoV-2-naive individuals were incubated on PEPperCHIP® SARS-CoV-2 Proteome Microarrays.
Serum antibody binding was visualized using respective fluorescently labeled secondary antibodies (anti-human IgG and anti-human IgA). Image acquisition and data
quantification resulted in epitope-specific antibody profiles for SARS-CoV-2. (B) The statistical analysis was performed in the R language (version 4.0.2). Data
quantification resulted in background-corrected median fluorescence intensity values (raw data) which were subjected to the following pre-processing steps:
(i) signals below 500 FU (fluorescence units) were set as zero, (ii) peptides with 0 FU in all individuals were removed and (iii) peptides with 0 FU in all infected
individuals were removed. For the longitudinal analysis, the applied pre-processing steps resulted in 1905 remaining peptides for IgG and 1775 peptides for IgA. For
the comparison of patients with mild versus severe symptoms, the applied pre-processing steps resulted in 2054 remaining peptides for IgG and 1830 peptides for
IgA. Next, the remaining filtered raw values were normalized using variance stabilizing normalization (VSN) followed by statistical analysis based on the LIMMA
algorithm. The false discovery rate (FDR) was controlled at a p-value < 0.1 using Benjamini Hochberg procedure.
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Figure  1

High density peptide arrays (HDPA) to map epitopes (PEPperPRINT)
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High density peptide arrays (HDPA) to map epitopes (PEPperPRINT)

Figure  S1

Table 1

SARS-CoV2-specific Peptides
Spike Nucleocapsid Envelope Membrane ORF1ab TOTAL

SARS-CoV-2 negative 119 41 1 47 294 502
SARS-CoV-2 positive 195 69 6 29 549 848

Overlap 90 35 6 17 353 501
Total 404 145 13 93 1196 1851



Figure  2

Comparison HDPA (PEPperPRINT) with prediction tools (Bepipred, DiscoTope)



High density peptide arrays (HDPA) to map epitopes (PEPperPRINT)

Figure  3
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Figure  2

High density peptide arrays (HDPA) to map epitopes (PEPperPRINT)
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Figure  1

High density peptide arrays (HDPA) to map epitopes (PepperPrint)



The Case for Pre-existing Immunity
(asymptomatic infections)

Cite as: R. Li et al., Science 
10.1126/science.abb3221 (2020).  
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The novel coronavirus that emerged in Wuhan, China (SARS-
CoV2) at the end of 2019 quickly spread to all Chinese prov-
inces and, as of 1 March 2020, to 58 other countries (1, 2). 
Efforts to contain the virus are ongoing; however, given the 
many uncertainties regarding pathogen transmissibility and 
virulence, the effectiveness of these efforts is unknown. 

The fraction of undocumented but infectious cases is a 
critical epidemiological characteristic that modulates the 
pandemic potential of an emergent respiratory virus (3–6). 
These undocumented infections often experience mild, lim-
ited or no symptoms and hence go unrecognized, and, de-
pending on their contagiousness and numbers, can expose a 
far greater portion of the population to virus than would oth-
erwise occur. Here, to assess the full epidemic potential of 
SARS-CoV2, we use a model-inference framework to estimate 
the contagiousness and proportion of undocumented infec-
tions in China during the weeks before and after the shut-
down of travel in and out of Wuhan. 

We developed a mathematical model that simulates the 
spatiotemporal dynamics of infections among 375 Chinese 
cities (see supplementary materials). In the model, we di-
vided infections into two classes: (i) documented infected in-
dividuals with symptoms severe enough to be confirmed, i.e., 
observed infections; and (ii) undocumented infected individ-
uals. These two classes of infection have separate rates of 
transmission: β, the transmission rate due to documented  

 
infected individuals; and μβ, the transmission rate due to un-
documented individuals, which is β reduced by a factor μ. 

Spatial spread of SARS-CoV2 across cities is captured by 
the daily number of people traveling from city j to city i and 
a multiplicative factor. Specifically, daily numbers of travel-
ers between 375 Chinese cities during the Spring Festival pe-
riod (“Chunyun”) were derived from human mobility data 
collected by the Tencent Location-based Service during the 
2018 Chunyun period (1 February–12 March 2018) (7). Chun-
yun is a period of 40 days—15 days before and 25 days after 
the Lunar New Year—during which there are high rates of 
travel within China. To estimate human mobility during the 
2020 Chunyun period, which began 10 January, we aligned 
the 2018 Tencent data based on relative timing to the Spring 
Festival. For example, we used mobility data from 1 February 
2018 to represent human movement on 10 January 2020, as 
these days were similarly distant from the Lunar New Year. 
During the 2018 Chunyun, a total of 1.73 billion travel events 
were captured in the Tencent data; whereas 2.97 billion trips 
are reported (7). To compensate for underreporting and rec-
oncile these two numbers, a travel multiplicative factor, θ, 
which is greater than 1, is included (see supplementary mate-
rials). 

To infer SARS-CoV2 transmission dynamics during the 
early stage of the outbreak, we simulated observations during 
10–23 January 2020 (i.e., the period before the initiation of 

Substantial undocumented infection facilitates the rapid 
dissemination of novel coronavirus (SARS-CoV2) 
Ruiyun Li1*, Sen Pei2*†, Bin Chen3*, Yimeng Song4, Tao Zhang5, Wan Yang6, Jeffrey Shaman2† 
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Estimation of the prevalence and contagiousness of undocumented novel coronavirus (SARS-CoV2) 
infections is critical for understanding the overall prevalence and pandemic potential of this disease. Here 
we use observations of reported infection within China, in conjunction with mobility data, a networked 
dynamic metapopulation model and Bayesian inference, to infer critical epidemiological characteristics 
associated with SARS-CoV2, including the fraction of undocumented infections and their contagiousness. 
We estimate 86% of all infections were undocumented (95% CI: [82%–90%]) prior to 23 January 2020 
travel restrictions. Per person, the transmission rate of undocumented infections was 55% of documented 
infections ([46%–62%]), yet, due to their greater numbers, undocumented infections were the infection 
source for 79% of documented cases. These findings explain the rapid geographic spread of SARS-CoV2 
and indicate containment of this virus will be particularly challenging. 
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“Among confirmed SARS-CoV-2 infections, we did not
observe significant differences in the frequency of asymp-
tomatic infection between age groups” (17).

Of the 43 studies that used PCR testing, 21 involved
high-density living or working environments, such as
nursing homes and factories (13, 15, 18, 19, 21, 22, 24–
28, 30, 38, 40, 42, 46, 50, 51, 53, 54). The settings with
the highest proportion of persons who tested positive
without symptoms included prisons (19) and poultry
processing plants (21). Yet, the data seem to be insuffi-
cient to conclude that setting was a causative factor. In
the 21 studies of high-density environments, the propor-
tion of persons who tested positive but had no symp-
toms at the time of testing ranged from 6.3% to 96.0%,
with a median of 62.8% (IQR, 40.6% to 87.0%). In the
remaining 22 studies that did not involve such high-
density environments, the proportion ranged from
27.3% to 100%, with a median of 67.2% (IQR, 43.5% to
84.7%).

Antibody Testing
In the 18 studies based on antibody testing (Table 2)

(55–72), the proportion of persons who tested positive
but did not report having had symptoms ranged from
21.7% to 85.0%, with a median of 41.2% (IQR, 32.6% to
48.1%).

Among the 18 antibody testing studies, 6 used ran-
dom selection of participants to achieve a representative
sample of their target population: residents of England
(55); Spain (56); Bavaria, Germany (59); Louisiana (60);
Maranhão, Brazil (64); or Connecticut (68). In these anti-
body studies with representative samples, the propor-
tion of persons who tested positive but did not report
having had symptoms ranged from 21.7% to 47.3%, with
a median of 32.7% (IQR, 28.7% to 43.4%).

The 2 largest studies based on antibody testing were
nationwide serosurveys from England (55) and Spain
(56), both designed to achieve representative samples of

Table 3. Evolution of Symptomatic Status

Study Initially Tested
PositiveWithout
Symptoms, n

Remained
Asymptomatic,
n (%)

U.S. skilled-nursing facility residents (15) 3227 2194 (68.0)
Vo’, Italy, residents (17) 34 34 (100.0)
U.S. Navy aircraft carrier crew (18) 978 572 (58.5)
San Francisco, California, residents (20) 41 23 (56.1)
Diamond Princess cruise ship passengers and crew (22) 410 311 (75.9)
Greek citizens evacuated from the United Kingdom, Spain, and Turkey (32)* 39 35 (89.7)
Japanese citizens evacuated from Wuhan, China (37) 6 3 (50.0)
London, England, nursing home residents and staff (38) 67 46 (68.7)
Indian citizens evacuated from Iran (39) 44 44 (100.0)
Maryland long-term care facility residents (40) 177 154 (87.0)
New York City obstetric patients 2 (47) 29 26 (89.7)
Illinois skilled-nursing facility residents (51) 14 13 (92.9)
Los Angeles, California, skilled-nursing facility residents (53) 14 6 (42.9)
King County, Washington, nursing facility residents (54) 27 3 (11.1)

* Data clarified via personal communication with coauthor.

Table 2. Antibody Testing

Study or Report Tested,
n*

Random
Sampling*

SARS-CoV-2–
Positive,n (%)

Asymptomatic,
n (%)

England residents (55) 365 104 Yes 17 576 (4.8) 5694 (32.4)
Spain residents (56) 61 075 Yes 3053 (5.0) 1008 (33.0)
Detroit, Michigan, hospital staff (57) 20 614 No 1818 (8.8) 798 (43.9)
Wuhan, China, hospital staff (58) 8553 No 424 (5.0) 148 (34.9)
Bavaria, Germany, children aged 1–18 y (59) 4859 Yes 47 (1.0) 22 (46.8)
Louisiana residents (60) 4778 Yes 311 (6.5) 147 (47.3)
Munich, Germany, hospital staff (61) 4554 No 108 (2.4) 28 (25.9)
Cairo, Egypt, hospital staff (62) 4040 No 170 (4.2) 116 (68.2)
Health care personnel at 13 U.S. medical centers (63) 3248 No 194 (6.0) 56 (28.9)
Maranhão, Brazil, residents (64) 3156 Yes 1167 (37.0) 320 (27.4)
Ischgl, Austria, residents (65) 1473 No 622 (42.2) 529 (85.0)
Wuhan dialysis patients (66) 1027 No 99 (9.6) 50 (50.5)
Buenos Aires, Argentina, residents (67) 873 No 466 (53.4) 396 (85.0)
Connecticut residents (68) 567 Yes 23 (4.1) 5 (21.7)
Sweden nursing home staff (69) 459 No 86 (18.7) 40 (46.5)
London, England, dialysis patients (70) 356 No 129 (36.2) 52 (40.3)
Nashville, Tennessee, hospital staff (71) 249 No 19 (7.6) 8 (42.1)
London maternity unit staff (72) 200 No 29 (14.5) 10 (34.5)

SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2.
* Boldface indicates details that increase the likelihood of higher-quality evidence.
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disease (van der Hoek et al., 2004). An independent study, also from the

Netherlands, found the same virus in blind cell culture isolate that had been

stored for many years before final characterization (Fouchier et al., 2004).

American researchers identified the same virus, then termed HCoV-NH

(for New Haven), by RT-PCR (Esper et al., 2005). The first bat CoVs

related to HCoV-NL63 were found in feces of European and African bats

belonging to the family Vespertilionidae (Drexler et al., 2010; Gloza-Rausch

et al., 2008; Pfefferle et al., 2009). While these viruses are related to HCoV-

NL63, they are not conspecific. The same applies to another virus found in

Fig. 1 Summary diagram of the animal groups representing natural hosts and the puta-
tive intermediate hosts for the six CoVs found in humans.
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in Fig. 3 and include Miniopterus bat coronavirus 1, Miniopterus bat
coronavirus HKU8, Rhinolophus bat coronavirus HKU2, Scotophilus
bat coronavirus 512, Pipistrellus bat coronavirus HKU5, Rousettus
bat coronavirus HKU9, and Tylonycteris bat coronavirus HKU4. Many
partial bat CoV RdRp sequences were not included in Fig. 3, because
only small sequence fragments reducing the phylogenetic resolu-
tion were available (Corman et al., 2013b; Drexler et al., 2010).
Still, the sequences from these studies (detailed in Table 1) do
not alter the overall picture of bat CoV-associated clades within
the genera Alpha- and Betacoronavirus.

For most of these bat CoVs, lack of complete genomic sequences
prevents their taxonomic designation as species. Still, many of the
partial sequences included in Fig. 3 branch deeply in the phyloge-
netic tree and likely represent not only new species, but even new
genetic clades. This is exemplified by the unclassified African Hip-
posideros betacoronaviruses (Pfefferle et al., 2009; Quan et al.,
2010; Tong et al., 2009), which putatively represent a yet to be de-
fined Betacoronavirus clade e and unclassified neotropical Carollia
and Pteronotus viruses (Corman et al., 2013b) putatively corre-
sponding to additional Betacoronavirus clades.

Fig. 4 shows that 11 of the 18 extant bat families already con-
tain CoV descriptions, including the two major bat lineages Yinpte-
rochiroptera and Yangochiroptera (Teeling et al., 2005). In most bat
families, both alpha- and betacoronaviruses are known, and these
detections have originated from both frugivorous and insectivo-
rous bat hosts. Lack of detection in the remaining bat families is
likely due to non-exhaustive sampling of the almost 1200 extant
bat species (Schipper et al., 2008; Simmons, 2005; Teeling et al.,
2005). This void may be filled in future studies.

1.5. Bats as coronavirus hosts worldwide

Fig. 5 shows the geographic origin of all 53 studies characteriz-
ing novel bat CoVs and Table 1 provides details for these studies.
The figure highlights that studies from all continents are now
available, but there is a drastic lack of studies from resource-
limited or politically unstable settings. Specifically, several biodi-
versity hotspots linked to the emergence of zoonotic viruses (Jones
et al., 2008) are not covered at all, including the Congo basin, large
parts of South-East Asia and the Neotropical ecozone. Future

ampling of bats from these and other poorly studied areas will
likely complete bat species coverage and further increase the
known CoV genomic diversity.

1.6. Association of coronavirus clades with mammalian hosts

1.6.1. Promiscuous versus host-specific coronaviruses
Only a small fraction of the currently known mammalian CoVs

originates from primate, ungulate, lagomorph, carnivore and ro-
dent hosts. As shown in Fig. 3, bats outnumber any other mamma-
lian host in terms of virus diversity. Throughout the CoV
phylogeny, examples can be found of both ‘‘promiscuous’’ and very
host-restricted viruses. The paramount example of a promiscuous
CoV is probably Betacoronavirus 1 (the species including BCoV,
HCoV-OC43 and related viruses), which has been detected in cows,
horses, dogs, humans, waterbucks, deer, antelopes, camels and gir-
affes worldwide (Alekseev et al., 2008; Guy et al., 2000; Hasoksuz
et al., 2007; Jin et al., 2007; Lim et al., 2013; Majhdi et al., 1997;
Zhang et al., 1994). Similarly, FIPV, Canine coronavirus (CCoV) and
TGEV are now included in a single species termed Alphacoronavirus
1, and MHV and Rat coronavirus together are now termed Murine
coronavirus (de Groot et al., 2012). Another example of an appar-
ently promiscuous CoV is the unclassified bat virus HKU10, which
has been detected in the bat families Hipposideridae and Pteropodi-
dae (Lau et al., 2012).

Most other CoVs have been confined to single host genera,
exemplified by the detection of SARS-related CoVs and several
alphacoronaviruses in Rhinolophus, Myotis, Miniopterus, Nyctalus
and Carollia bat hosts, including detections of closely related
viruses in individual bats separated by thousands of miles (Corman
et al., 2013b; Drexler et al., 2010; Tang et al., 2006). Similarly, Hip-
posideros betacoronaviruses from Thailand, Kenya, Nigeria and
Ghana are closely related (Gouilh et al., 2011; Pfefferle et al.,
2009; Quan et al., 2010; Tong et al., 2009) and the betacoronavirus
HKU9 has been detected in different species of flying foxes in Africa
and Asia (Anthony et al., 2013b; Lau et al., 2010b; Tao et al., 2012;
Watanabe et al., 2010; Woo et al., 2007). Of note, the detection of
both host-specific and -nonspecific mammalian CoVs parallels
what can be observed in the avian Coronavirinae genera. For exam-
ple, infectious bronchitis virus (IBV, genus Gammacoronavirus) has
been detected in a wide range of birds, while the recently de-
scribed deltacoronaviruses appear to be more host-specific (Chu
et al., 2011).

1.6.2. Evidence for phylogenetic co-segregation of coronaviruses and
bat hosts

Co-segregation of CoVs and their bat hosts is most visible for
HKU9, the Hipposideros betacoronaviruses and the SARS-related
CoV, compared to Pteropodidae, Hipposideros and Rhinolophus hosts
(Figs. 3 and 4). A striking counter-example is the large number of
bat alphacoronaviruses that cluster together with the prototype
viruses HCoV-229E, -NL63 and PEDV (Fig. 3). Viruses from numer-
ous bat hosts, together with ungulate and human viruses, are con-
tained in this part of the Alphacoronavirus tree, and in contrast to
the betacoronaviruses, the designation of clearly separated subc-
lades is challenging. However, more work needs to be done to for-
mally analyze the degree of phylogenetic co-segregation in the
Coronavirinae subfamily.

1.7. Coronavirus host switches from bats

1.7.1. Host switches suggested by phylogenetically-related viruses in
humans and bats

The most well-studied CoV host switches have probably oc-
curred from bats to humans. The foremost example is the paradig-
matic host switch of SARS-CoV from rhinolophid bats into humans

Fig. 2. Phylogenetic relationships in the subfamily Coronavirinae. Bayesian phylog-
eny of an 816-nucleotide RNA-dependent RNA polymerase fragment, as described
previously (Drexler et al., 2010) of the subfamily Coronavirinae using MrBayes V3.1
(Ronquist and Huelsenbeck, 2003) under assumption of a GTR + G + I substitution
model, using 2,000,000 trees sampled every 100 steps, annotated with a burn-in of
25% using TreeAnnotator V1.7.4 and visualized using FigTree V1.4 from the BEAST
package (Drummond et al., 2012). Cavally virus (Zirkel et al., 2011) was used as an
outgroup. Values at deep nodes indicate statistical support from Bayesian posterior
probabilities, scale bar genetic distance.
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or potentially civets (Balboni et al., 2011; Drexler et al., 2010; Lau
et al., 2010a, 2005; Li et al., 2005; Ren et al., 2006; Rihtaric et al.,
2010; Yang et al., 2013). These human, civet and bat viruses are
now officially summarized by the ICTV in one species, termed
SARS-related coronavirus (de Groot et al., 2012).

The genomic relatedness of human and bat SARS-related coro-
naviruses is greatest in the ORF1ab, while a bat ancestor containing
the structural proteins of human SARS-CoV has so far not been de-
tected. Bat SARS-related coronaviruses fail to interact with the hu-
man SARS-CoV receptor molecule ACE2, possibly associated with
small deletions in their receptor-binding domain (RBD), compared
to human SARS-CoV (Li, 2013; Ren et al., 2008). In line with these
differences, a bat SARS-related coronavirus synthesized by reverse
genetics was only infectious in cell culture and mice when the
spike gene was exchanged by the human SARS-CoV homologue
(Becker et al., 2008). Because the RBD of European rhinolophid
bat SARS-related coronaviruses was more related to that of the hu-
man SARS-CoV than the RBD from Chinese bat viruses (Drexler
et al., 2010), recombination may have played a role in the emer-
gence of the human pathogenic virus.

However, not all rhinolophid bat species have been tested for
SARS-related coronaviruses. For example, only 12 of the at least 19
rhinolophid bat species that occur in China have been tested and
SARS-related coronavirus sequence information is only available
from 5 of these species (Lau et al., 2005; Li et al., 2005; Poon
et al., 2005; Tang et al., 2006; Woo et al., 2006, 2007; Yang et al.,
2013; Yuan et al., 2010). Therefore, further studies of Rhinolophus
species in Africa, Europe and Asia may provide more insight into
the ancestral bat viruses that were the source of the emergence
of human SARS-CoV.

It should also be mentioned that the Hipposideros betacoronav-
iruses detected in Africa and Asia are clearly distinct from SARS-re-
lated coronaviruses. These viruses can be distinguished by both
sequence distance-based taxonomic approaches described above.
Additionally, the phylogenetic position and genomic properties of
the unclassified Hipposideros betacoronaviruses differ from SARS-
related coronaviruses. These genomic properties include chiefly
their different viral 3’-genome ends and accessory ORFs down-
stream from the membrane gene in the Hipposideros CoVs (Pfefferle
et al., 2009; Quan et al., 2010).

Fig. 3. Phylogenetic relationships between coronaviruses and bat hosts. Details of the phylogeny shown in Fig. 2 for the genera Alpha- and Betacoronavirus. ICTV species are
given to the right of clade designations and bat symbols, when applicable. Virus designations include strain names, GenBank accession numbers and host information as the
first three letters of the latin genus and species names. Bat viruses are shown in red. Boxes indicate Alpha- and Betacoronavirus genera, according to the coloring in Fig. 2.
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HKU1 spike proteins, consistent with the extensive spread of
seasonal betacoronavirus infections within the USA (Fig. 2a–
c). As reported previously, we detected a high proportion of

donors who seroconverted and were SARS-CoV-2 IgG+ in a
community in New York City, along with a significant num-
ber of IgM and IgA seropositive donors, including several

a

b

Fig. 1 Sequence homology of
SARS-CoV-2S glycoprotein
ectodomain with endemic and
seasonal betacoronaviruses.
SARS-CoV-2 stabilized spike
protein ectodomain sequence
aligned with MERS-CoV
(MERS), SARS-CoV (SARS1),
HCoV-OC43, and HCoV-HKU1
proteinsbetacoronaviruses. a
Percent (%) similarity to SARS-
CoV-2. b Percent (%) identity to
SARS-CoV-2. Domain
abbreviations are: NTD, N-
terminal domain; RBD, receptor-
binding domain; S1/S2, furin
cleavage site; FP, fusion peptide;
HR1/HR2, heptad repeat regions

Fig. 2 Serologic positivity of immunoglobulins G, M, and A for five
betacoronaviruses in pre-2019 and high prevalence SARS-CoV-2 blood
donors. Anti-spike ELISA results for archival negative (pre-2019, black),
hot-spot community symptomatic (pink), and hot-spot community

asymptomatic (teal) blood donors for a–c IgG, d–f IgM, and g–i IgA.
a, b Raw signal intensity for IgG. c Percent positive for IgG. d, e Raw
signal intensity for IgM. f Percent positive for IgM. g, h Raw signal
intensity for IgA. i Percent positive for IgA

J Clin Immunol
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FIGURE 1 | Study overview and statistical analysis workflow: SARS-CoV-2 proteome-wide IgG and IgA epitope mapping. (A) The proteome of SARS-CoV-2 was
translated in 15-mer overlapping peptides with a peptide-to-peptide overlap of 13 amino acids. The resulting 4,883 individual peptides were printed in duplicates on
the microarray. Sera from confirmed COVID-19 patients and SARS-CoV-2-naive individuals were incubated on PEPperCHIP® SARS-CoV-2 Proteome Microarrays.
Serum antibody binding was visualized using respective fluorescently labeled secondary antibodies (anti-human IgG and anti-human IgA). Image acquisition and data
quantification resulted in epitope-specific antibody profiles for SARS-CoV-2. (B) The statistical analysis was performed in the R language (version 4.0.2). Data
quantification resulted in background-corrected median fluorescence intensity values (raw data) which were subjected to the following pre-processing steps:
(i) signals below 500 FU (fluorescence units) were set as zero, (ii) peptides with 0 FU in all individuals were removed and (iii) peptides with 0 FU in all infected
individuals were removed. For the longitudinal analysis, the applied pre-processing steps resulted in 1905 remaining peptides for IgG and 1775 peptides for IgA. For
the comparison of patients with mild versus severe symptoms, the applied pre-processing steps resulted in 2054 remaining peptides for IgG and 1830 peptides for
IgA. Next, the remaining filtered raw values were normalized using variance stabilizing normalization (VSN) followed by statistical analysis based on the LIMMA
algorithm. The false discovery rate (FDR) was controlled at a p-value < 0.1 using Benjamini Hochberg procedure.
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How conserved are identified epitopes?
(seasonal human Coronaviruses)

Table 2

OC43-specific Peptides
Spike Nucleocapsid Envelope Membrane ORF1ab TOTAL

SARS-CoV-2 negative 126 37 6 4 293 466
SARS-CoV-2 positive 209 70 10 27 508 824

Overlap 104 35 2 8 280 429
Total 439 142 18 39 1081 1719

HKU1-specific Peptides
Spike Nucleocapsid Envelope Membrane ORF1ab TOTAL

SARS-CoV-2 negative 104 43 7 17 293 464
SARS-CoV-2 positive 220 105 7 23 503 858

Overlap 90 35 2 10 254 391
Total 414 183 16 50 1050 1713

NL63-specific Peptides
Spike Nucleocapsid Envelope Membrane ORF1ab TOTAL

SARS-CoV-2 negative 139 54 12 17 296 518
SARS-CoV-2 positive 183 77 8 24 571 863

Overlap 70 56 3 14 269 412
Total 392 187 23 55 1136 1793

229E-specific Peptides
Spike Nucleocapsid Envelope Membrane ORF1ab TOTAL

SARS-CoV-2 negative 116 43 3 15 306 483
SARS-CoV-2 positive 158 99 7 38 592 894

Overlap 72 46 2 12 325 457
Total 346 188 12 65 1223 1834
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How conserved are identified epitopes?
(seasonal human Coronaviruses)

To evaluate conservation of epitopes:

- Aligned protein sequences of viral strains and calculated
conservation score based on physico-chemical properties

- Defined cross-reactivity per amino acid sites
within 15-mer peptides

- Sites with conservation score > 6 for which Ab response
to SARS-CoV-2 and at least one shCoV were considered cross-reactive

- ~ 27% of the pool of detected epitope sites are cross-reactive

- Local alignment of HDPA response for S protein of all 5 viruses 
shown on the left
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Are cross-reactive epitope sites that particularly important
for the humoral immune response after exposure to SARS-CoV-2?
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Viral epitope profiling of COVID-19 patients reveals
cross-reactivity and correlates of severity
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INTRODUCTION: A systematic characterization
of the humoral response to severe acute respi-
ratory system coronavirus 2 (SARS-CoV-2) epi-
topes has yet to be performed. This analysis is
important for understanding the immunogenic-
ity of the viral proteome and the basis for cross-
reactivity with the common-cold coronaviruses.
Coronavirus disease 2019 (COVID-19), caused

by SARS-CoV-2, is notable for its variable course,
with some individuals remaining asymptomatic
whereas others experience fever, respiratory
distress, or even death. A comprehensive inves-
tigation of the antibody response in individuals
with severe versus mild COVID-19—as well as
an examination of past viral exposure history—
is needed.

RATIONALE: An understanding of humoral re-
sponses to SARS-CoV-2 is critical for improving
diagnostics and vaccines and gaining insight
into variable clinical outcomes. To this end,
we used VirScan, a high-throughput method

to analyze epitopes of antiviral antibodies in
human sera. We supplemented the original
VirScan library with additional libraries of
peptides spanning the proteomes of SARS-
CoV-2 andall other human coronaviruses. These
libraries enabled us to precisely map epitope
locations and investigate cross-reactivity be-
tweenSARS-CoV-2andother coronavirusstrains.
The original VirScan library allowed us to
simultaneously investigate antibody responses
to prior infections and viral exposure history.

RESULTS: We screened sera from 232 COVID-
19 patients and 190 pre–COVID-19 era controls
against the original VirScan and supplemen-
tal coronavirus libraries, assaying more than
108 antibody repertoire–peptide interactions.
We identified epitopes ranging from “private”
(recognized by antibodies in only a small num-
ber of individuals) to “public” (recognized by
antibodies in many individuals) and detected
SARS-CoV-2–specific epitopes as well as those

that cross-react with common-cold corona-
viruses. Several of these cross-reacting anti-
bodies are present in pre–COVID-19 era samples.
We developed a machine learning model that
predicted SARS-CoV-2 exposure history with
99%sensitivity and98%specificity fromVirScan
data. We used the most discriminatory SARS-
CoV-2 peptides to produce a Luminex-based
serological assay, which performed similarly to
gold-standard enzyme-linked immunosorbent
assays. We stratified the COVID-19 patient sam-
ples by disease severity and found that patients
who had required hospitalization exhibited
stronger and broader antibody responses to
SARS-CoV-2 but weaker overall responses to
past infections compared with those who did
not need hospitalization. Further, the hospi-
talized group had higher seroprevalence rates
for cytomegalovirus and herpes simplex virus 1.
These findings may be influenced by differ-
ences in demographic compositions between
the two groups, but they raise hypotheses that
may be tested in future studies. Using alanine
scanning mutagenesis, we precisely mapped
823 distinct epitopes across the entire SARS-
CoV-2 proteome, 10 of which are likely targets
of neutralizing antibodies. One cross-reactive
antibody epitope in S2 has been previously
suggested to be neutralizing and, as it exists in
pre–COVID-19 era samples, could affect the
severity of COVID-19.

CONCLUSION:Wepresent a highly detailed view
of the epitope landscape within the SARS-CoV-2
proteome. This knowledge may be used to
produce diagnostics with improved specificity
and canprovide a stepping stone to the isolation
and functional dissection of both neutralizing
antibodies and antibodies thatmight exacerbate
patient outcomes through antibody-dependent
enhancement or immune distraction.
Our study reveals notable correlations be-

tween COVID-19 severity and both viral expo-
sure history and overall strength of the antibody
response to past infections. These findings are
likely influenced by demographic covariates,
but they generate hypotheses that may be
tested with larger patient cohorts matched
for age, gender, race, and other demographic
variables. ▪
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SARS-CoV-2 epitope mapping. VirScan detects antibodies against SARS-CoV-2 in COVID-19 patients with
severe and mild disease. Heatmap color represents the strength of the antibody response in each sample
(columns) to each protein (rows, left) or peptide (rows, right). VirScan reveals the precise positions of
epitopes, which can be mapped onto the structure of the spike protein (S). Examination of SARS-CoV-2 and
seasonal coronavirus sequence conservation explains epitope cross-reactivity. A, Ala; D, Asp; E, Glu; F, Phe;
I, Ile; K, Lys; L, Leu; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; Y, Tyr.
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may be tested in future studies. Using alanine
scanning mutagenesis, we precisely mapped
823 distinct epitopes across the entire SARS-
CoV-2 proteome, 10 of which are likely targets
of neutralizing antibodies. One cross-reactive
antibody epitope in S2 has been previously
suggested to be neutralizing and, as it exists in
pre–COVID-19 era samples, could affect the
severity of COVID-19.

CONCLUSION:Wepresent a highly detailed view
of the epitope landscape within the SARS-CoV-2
proteome. This knowledge may be used to
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and functional dissection of both neutralizing
antibodies and antibodies thatmight exacerbate
patient outcomes through antibody-dependent
enhancement or immune distraction.
Our study reveals notable correlations be-

tween COVID-19 severity and both viral expo-
sure history and overall strength of the antibody
response to past infections. These findings are
likely influenced by demographic covariates,
but they generate hypotheses that may be
tested with larger patient cohorts matched
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SARS-CoV-2 epitope mapping. VirScan detects antibodies against SARS-CoV-2 in COVID-19 patients with
severe and mild disease. Heatmap color represents the strength of the antibody response in each sample
(columns) to each protein (rows, left) or peptide (rows, right). VirScan reveals the precise positions of
epitopes, which can be mapped onto the structure of the spike protein (S). Examination of SARS-CoV-2 and
seasonal coronavirus sequence conservation explains epitope cross-reactivity. A, Ala; D, Asp; E, Glu; F, Phe;
I, Ile; K, Lys; L, Leu; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; Y, Tyr.
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- analyzed if the humoral immune 
response to SARS-CoV-2 
epitopes correlated with the 
number of cross-reactive epitopes 
identified. 

- to what extent is the response to 
SARS-CoV-2 predictable based 
on cross-reactivity to other 
endemic hCoVs?

- We defined cross-reactive
epitopes as peptide sequences 
with at least five cross-reactive 
epitope sites

- 16 epitopes being cross-reactive



Figure  5

Viral Genome Sequencing
- We tracked the evolution of identified SARS-CoV-2 B 
cell epitopes using single nucleotide variants (SNVs) 
identified in 38,685 SARS-CoV-2 genome sequences 
from the NCBI sequence read archive (Wave 1: 01-
07/2020; Wave 2: 08-12/2020) sequenced using 
Illumina paired-end amplicons with a minimum 
average depth of coverage of 200x and fewer than 
10,000 sites with a depth of coverage lower than 100x. 
Combined with additional filters to remove
sequencing errors 

- Such deep coverage allowed us to identify SNVs that
are polymorphic within patients, reflecting within-
patient evolution, as well as those that are shared 
between the consensus sequences of different 
patients.

- Mutations in epitope sites or non-epitope sites for 
within host and between host genomic viral sequences

Within host between host



Figure  5

Viral Genome Sequencing

Within host between host

These observations indicate that nonsynonymous 
substitutions in S and N epitope sites accumulate 
most rapidly upon transmission, rather than within 
patients.

Taken together these results support the notion that 
most of the selective pressure for immune
evasion of SARS-CoV-2 occurs upon transmission 
between hosts, consistent with the asynchrony
model
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Assessing Immune Evasion Potential of SARS-CoV-2 Variants
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