

Antibody Cross-Reactivity Profiling of a Human Monoclonal Antibody with the PEPperCHIP® Human Epitome Microarray

Introduction

Antibodies are one of the most important life science tools for therapeutics, basic research and diagnostic tests. However, mono- and polyclonal antibodies are often poorly characterized in terms of specificity and cross-reactivity, as summarized in the recent Nature Feature *Reproducibility crisis: Blame it on the antibodies*.¹ The Human Protein Atlas consortium from Sweden has analyzed around 20,000 commercial research antibodies so far, and found that less than 50% can be effectively used for immunohistochemical tests. Researchers at Mount Sinai Hospital in Toronto, Canada, had been chasing a protein called CUZD1, a supposed diagnostic marker protein for pancreatic cancer. They bought a protein-detection kit comprising a CUZD1 specific antibody and wasted two years, \$500,000 and thousands of patient samples before they realized that the antibody actually recognized a different cancer protein, CA125, but did not bind to CUZD1 at all.

These two examples of the Nature Feature strongly underline the urgent need for antibody validation and cross-reactivity testing. To address this topic, PEPperPRINT has developed a three-step approach based on the new PEPperCHIP[®] Human Epitome Microarray² (Fig. 1).

Fig. 1: Workflow of PEPperPRINT's three-step approach for antibody cross-reactivity analysis

In this application note, we describe the cross-reactivity analysis of a human monoclonal anti-c-Myc (chi9E10) antibody with the PEPperCHIP[®] Human Epitome Microarray and the three-step approach sketched in Fig. 1. The human monoclonal anti-c-Myc (chi9E10) antibody reacted with a number of peptides of the PEPperCHIP[®] Human Epitome Microarray with moderate to high signal-to-noise ratios. MEME analysis³ of the top 10 peptide hits revealed a single consensus motif xLV(S/A/P)E that was further analyzed with the FIMO tool to identify cross-reactive human antigens containing the same motif.

Results & Discussion

The PEPperCHIP[®] Human Epitome Microarray covers 29,127 linear peptides printed in duplicate (58,254 peptide spots) as well as additional polio and HA control peptides.² The peptide microarray content is based on all linear B-cell epitopes of the Immune Epitope Database⁴ with the host "human", and was further complemented by all epitopes of the most common vaccines. Therefore, the PEPperCHIP[®] Human Epitome Microarray is an ideal tool to screen for antibody responses against tens of thousands of different antigenic peptides that were described in literature and linked with antibody responses in human serum or plasma. Moreover, it enables straightforward access to scientific background information of each peptide hit by direct links to epitope entries in the Immune Epitope Database.

In a microarray pre-staining, PEPperCHIP[®] Human Epitome Microarray was initially incubated with the secondary antibody goat anti-human IgG (Fc) DyLight680 only to analyze background interactions with the printed database epitopes. Subsequently, the same microarray was incubated with human monoclonal antibody anti-c-Myc (chi9E10) with a concentration of 2 µg/ml followed by staining with the secondary antibody and control antibody mouse monoclonal anti-HA (12CA5) DyLight800. Data read-out was done with a LI-COR Odyssey Imaging System, and image analysis with PepSlide[®] Analyzer⁵.

Human mAb anti-c-Mvc (chi9E10), 2 µg/ml

Fig. 2: Pre-staining with the PEPperCHIP[®] Human Epitome Microarray with the secondary antibody goat antihuman IgG (Fc) DyLight680 did not show any background interaction with the 29,127 database epitopes (left). Subsequent incubation of the same microarray with human monoclonal antibody anti-c-Myc (chi9E10) followed by staining with secondary and control antibodies highlighted few but clear interactions of human mAb anti-c-Myc (chi9E10) with the database epitopes in red as well as a well-defined frame of HA control peptides in green (right).

Pre-staining of the PEPperCHIP[®] Human Epitome Microarray with the secondary antibody only did not show background interactions with the database epitopes (Fig. 2, left). Incubation of the same microarray with human monoclonal antibody anti-c-Myc (chi9E10) was followed by staining with secondary and control antibodies and resulted in few but clear responses with moderate to high signal-to-noise ratios as well as a well-defined frame of HA control peptides (Fig. 2, right).

After data quantification, the top 40 interactions of human mAb anti-c-Myc (chi9E10) were sorted by decreasing spot intensities (Fig. 3). The main responses of the monoclonal antibody were directed against peptides of nucleoprotein of measles virus strain Edmonston, erythrocyte membrane-associated giant protein antigen 332 of *Plasmodium falciparum*, polymerase of hepatitis B virus and truncated

giant protein antigen 332 of *Plasmodium falciparum*, polymerase of hepatitis B virus and truncated Is1560 transposase of *Mycobacterium tuberculosis*. The strongest cross-reaction with a human epitope was found for dihydrolipoamide S-acetyltransferase peptides with the consensus motif LAKILVPE.

Pepude	Human mAb anti-c-wyc (chi9E10), 2 µg/mi	epitope in	Source Morecure Accession	i source wolecule Name	source organism io	source organism wante
LGITAEDARLVSEIAMH	7.987,5	98874	127900	Nucleoprotein	11235	Measles virus strain Edmonston
EEVVGEEKLVSEEIVT	2.535,0	11927	13508497	Erythrocyte Membrane-Associated Giant Protein Antigen	igen 5833 Plasmodium Falciparum	
EVQEEGYLAKILVPE	1.960,5	125443	119587578	Dihydrolipoamide S-Acetyltransferase (E2 Component Of	9606 Homo Sapiens	
LAKILVPEGTRDVP	1.559,0	125468	119587578	Dihydrolipoamide S-Acetyltransferase (E2 Component Of	9606	Homo Sapiens
TA EDA RLVSE IA MHTTE	1.050,5	98874	127900	Nucleoprotein	11235	Measles virus strain Edmonston
TYGRKLHLYSHPIILGF	1.007,5	190568	4323200	Polymerase	10407	Hepatitis B virus
ALVAEGIEAIVFRTL	923,0	178535	15608176	Truncated Is1560 Transposase	1773	Mycobacterium tuberculosis
NGFLDVFTSFGGLVAE	748,0	<u>6520</u>	75352214	Outer Surface Protein VIse	224326	Borrelia Burgdorferi B31
FTSFGGLVAEAFGF	639,0	18069	75352214	Outer Surface Protein Vlse	224326	Borrelia Burgdorferi B31
QYLVGERTVLAGQCYI	620,0	133331	113118	Muscarinic Acetyl choline Receptor M1	9606	Homo Sapiens
AQTQSLVYPF	593,0	78152	162797	Beta-Casein Precursor	9913	Bos Taurus
VVSYVNTN VGLKFRQLL	547,5	53394	164509170	Precore Protein	10418	Hepatitis B virus subtype ayw
VLNPWDQVKR	545,5	<u>95970</u>	115654	Alpha-S2-Casein Precursor	9913	Bos Taurus
WLSLLVPFV	496,0	72794	15211906	Large Surface Antigen	10407	Hepatitis B virus
GRSPRRRTPSPRRR	495,0	55713	16930336	Core Protein	10407	Hepatitis B virus
GLSPTVWLSV	485,0	21139	128168864	En velope Protein	10407	Hepatitis B virus
PSPRRRRSQSPRRRR	475,5	55713	16930336	Core Protein	10407	Hepatitis B virus
WSEGEGAVFYRVDLHFI	468,0	119822	62094	110 Kd Polyprotein Precursor	11041	Rubella virus
GAAGTAAQAAVVRFQ	443,0	21976	15611010	10 Kda Culture Filtrate Antigen Esxb	1773	Mycobacterium tuberculosis
PWATLVAES	418,0	140582				
KYGGTEIKYNGEEYLI	414,0	34437	116200	10 Kda Chaperonin	1773	Mycobacterium tuberculosis
RK LHLYS HP II LGFR KI	412,0	190568	4323200	Polymerase	10407	Hepatitis B virus
SSLRGF	408,0	156460				
MININ IF MRESS RS FL	399,0	<u>11711</u>				
RRRSQSPRRRR	396,5	<u>55713</u>	16930336	Core Protein	10407	Hepatitis B virus
HVYLDTVVLLGALAN	383,0	25123	15609123	Probable Conserved Integral Membrane Protein	83332	Mycobacterium tuberculosis H37Rv
RIRRSILPYGDSMDRI	377,0	125882	146345399	Collagen Alpha-1(Xvii) Chain	9606	Homo Sapiens
WWARRRRWRWKRR	360,0	127897	5441235	Orf1	68887	Torque Teno Virus
FP GGGQ IV GGV YVLPRR	357,0	150483	974351	Core Protein	356114	Hepatitis C Virus Genotype 3
LVAEEDER	352,5	7979	SRC 279960	Genome Polyprotein	11103	Hepatitis C Virus
DVKFPGGGQI	332,0	10636	130461	Genome Polyprotein	11103	Hepatitis C Virus
GPSVFLF	331,0	107421	494350	Chain H, Three-Dimensional Structure Of A Human Immur	9606	Homo Sapiens
AIAEYERSAAVLVRYPF	329,5	193035	564602885	Peptidylarginine Deiminase	837	Porphyromonas Gingivalis
NPGLLRFLPQLSERL	324,0	179310	15609704	Hypothetical Protein	1773	Mycobacterium tuberculosis
FLPSDFFPSV	311,5	79531	116946	Capsid Protein	10418	Hepatitis B virus Subtype Ayw
ELGGK PALVP DRQ VLYQ	311,0	20145	81992797	Genome Polyprotein	31647	Hepatitis C Virus Subtype 1B
VECVQP	311,0	68440	130458	Genome Polyprotein	31647	Hepatitis C Virus Subtype 1B
QSLSFDSSNPEYFDGYW	309,0	<u>176618</u>	226694183	Integrin Alpha-lib	9606	Homo Sapiens
AQLLTEFAI	308,0	4002	57117045	Ppe Family Protein	83332	Mycobacterium tuberculosis H37Rv
CLLCAYSIEF	301,5	7713	124757	Ovomucoid Precursor	9031	Gallus Gallus

Fig. 3: The top 40 peptide hits of human mAb anti-c-Myc (chi9E10) on the PEPperCHIP[®] Human Epitome Microarray were sorted by decreasing spot intensities. The second column shows the fluorescence intensities of each peptide with direct links to the corresponding Immune Epitope Database entries in the third column.

The top 10 peptide hits of human mAb anti-c-Myc (chi9E10) were uploaded to the MEME tool of the MEME Suite to discover common motifs in these peptides.³ MEME represents motifs as position-dependent letter-probability matrices, which describe the probability of each possible letter at each position in the pattern. Analysis of the top 10 peptides of human mAb anti-c-Myc (chi9E10) resulted in a single consensus motif ${}^{1}xLV(S/A/P)E^{5}$ with a very high statistical significance of E = 1.0e-004 (Fig. 4, left). According to this MEME motif, amino acid ${}^{2}L$ appeared to be essential for binding of human mAb anti-c-Myc (chi9E10), while amino acids ${}^{3}V$ and ${}^{5}E$ were highly conserved. Amino acid position 1 was rather variable, position 4 exhibited a clear preference for S, A and P.

The MEME consensus motif was uploaded into the FIMO tool ("Find Individual Motif Occurrences"), and processed in a protein database blast search with a focus on human proteins. The FIMO analysis resulted in 727 human proteins with the MEME motif ¹xLV(S/A/P)E⁵ or motif variants. Sorted by decreasing p-values and hence response probabilities, these proteins can be regarded as possible candidates for cross-reactions of human monoclonal antibody anti-c-Myc (chi9E10) (Fig. 4, right). The top FIMO candidates were based on the consensus motif HLVSE and assigned to DNA repair protein XRCC4, putative uncharacterized protein BVES-AS1, transmembrane protein 109 or choline O-

acetyltransferase. The expected response against human Myc proto-oncogene protein was also found among the database hits at position 175, albeit with a slightly less significant p-value.

Sequence Name	Start	Stop	Score	p-Value	q-Value	Matched Sequence	Species	Database Entry
sp Q 13426 XRCC4_HUMAN	9	13	15,49	6,71E-07	0,865	HLVSE	Human	Q13426
sp Q5T3Y7 BVAS1_HUMAN	40	44	15,49	6,71E-07	0,865	HLVSE	Human	Q5T3Y7
sp Q9BVC6 TM109_HUMAN	75	79	15,49	6,71E-07	0,865	HLVSE	Human	Q9BVC6
sp P28329 CLAT_HUMAN	152	156	15,49	6,71E-07	0,865	HLVSE	Human	P28329
sp Q9H0K6 PUS7L_HUMAN	208	212	15,49	6,71E-07	0,865	HLVSE	Human	<u>Q9H0K6</u>
sp Q8N2I9 STK40_HUMAN	222	226	15,49	6,71E-07	0,865	HLVSE	Human	Q8N219
sp P09917 LOX5_HUMAN	373	377	15,49	6,71E-07	0,865	HLVSE	Human	P09917
sp Q9UPU7 TBD2B_HUMAN	589	593	15,49	6,71E-07	0,865	HLVSE	Human	Q9UPU7
sp Q6N021 TET2_HUMAN	839	843	15,49	6,71E-07	0,865	HLVSE	Human	Q6N021
sp Q92673 SORL_HUMAN	914	918	15,49	6,71E-07	0,865	HLVSE	Human	Q92673
sp Q8WXI7 MUC16_HUMAN	915	919	15,49	6,71E-07	0,865	HLVSE	Human	Q8WX17
sp Q6ZS81 WDFY4_HUMAN	2402	2406	15,49	6,71E-07	0,865	HLVSE	Human	Q6Z581
sp Q6UN 15 FIP 1_HUMA N	8	12	15,20	2,31E-06	0,865	RLVSE	Human	Q6UN15
sp Q8NBP5 MFSD9_HUMAN	14	18	15,20	2,31E-06	0,865	RLVSE	Human	O8NBP5
sp Q9Y5F3 PCDB1_HUMAN	65	69	15,20	2,31E-06	0,865	RLVSE	Human	Q9Y5F3
sp Q8NCA9 ZN784_HUMAN	75	79	15,20	2,31E-06	0,865	RLVSE	Human	Q8NCA9
sp Q6NT89 TRNP1_HUMAN	118	122	15,20	2,31E-06	0,865	RLVSE	Human	Q6NT89
sp Q 13516 O U G2_HUMAN	171	175	15,20	2,31E-06	0,865	RLVSE	Human	Q13516
sp Q6XPS3 TPTE2_HUMAN	203	207	15,20	2,31E-06	0,865	RLVSE	Human	Q6XPS3
sp 0 00515 LA D1_HUMA N	254	258	15,20	2,31E-06	0,865	RLVSE	Human	000515
sp Q5TZA2 CROCC_HUMAN	308	312	15,20	2,31E-06	0,865	RLVSE	Human	Q5TZA2
sp Q99489 OXDD_HUMAN	323	327	15,20	2,31E-06	0,865	RLVSE	Human	Q99489
sp Q9NRW7 VPS45_HUMAN	340	344	15,20	2,31E-06	0,865	RLVSE	Human	Q9NRW7
sp Q15276 RABE1_HUMAN	508	512	15,20	2,31E-06	0,865	RLVSE	Human	Q15276
sp P43304 GPDM_HUMAN	525	529	15,20	2,31E-06	0,865	RLVSE	Human	P43304
sp Q8TER5 ARH40_HUMAN	1088	1092	15,20	2,31E-06	0,865	RLVSE	Human	Q8TER5
sp P78357 CNTP1_HUMAN	1255	1259	15,20	2,31E-06	0,865	RLVSE	Human	P78357
sp Q.96L96 ALPK 3_HUMA N	1607	1611	15,20	2,31E-06	0,865	RLVSE	Human	Q96L96
sp P46939 UTRO_HUMA N	1692	1696	15,20	2,31E-06	0,865	RLVSE	Human	P46939
sp Q8WZ42 TITIN_HUMAN	2841	2845	15,20	2,31E-06	0,865	RLVSE	Human	Q8WZ42

Fig. 4: MEME analysis of the top 10 peptide hits of the PEPperCHIP[®] Human Epitome Microarray resulted in a single consensus motif ¹xLV(S/A/P)E⁵ with a very high statistical significance (left). Amino acid ²L was found to be essential for binding of human mAb anti-c-Myc (chi9E10), amino acids ³V and ⁵E were also highly conserved. Amino acid position 1 was rather variable, while position 4 exhibited a clear preference for amino acids S, A and P. FIMO analysis of this motif in Swissprot resulted in 727 human proteins as possible targets for antibody cross-reactivity sorted by decreasing response probabilities. The table shows the top 30 hits with highest statistical significances based on consensus motifs HLVSE and RLVSE (right).

Conclusion

Using our three-step cross-reactivity analysis based on the PEPperCHIP[®] Human Epitome Microarray and the MEME Suite with the MEME motif and FIMO tools, we could identify a common peptide motif ¹xLV(S/A/P)E⁵ that is recognized by test antibody anti-c-Myc (chi9E10). A database blast search with this consensus motif resulted in a probability-dependent list of human proteins as possible candidates for antibody cross-reactions. Interestingly, the c-Myc antigen was also found among the candidate proteins, albeit with a lower statistical significance than the top hits. On the PEPperCHIP[®] Human Epitome Microarray, we further identified a clear cross-reaction with dihydrolipoamide S-acetyltransferase peptides with the consensus motif LAKILVPE with the xLVPE stretch.

The results of the PEPperCHIP[®] Human Epitome Microarray and the MEME/FIMO analysis enable a cross-reactivity evaluation of a given antibody with respect to its application. A more detailed analysis of the identified common motif can be done by a PEPperMAP[®] Epitope Substitution Scan to identify tolerated amino acid exchanges and essential amino acid positions.⁶ Alternatively, selected cross-reactions can be validated by ELISA or in Western Blot analysis.

¹ http://www.nature.com/news/reproducibility-crisis-blame-it-on-the-antibodies-1.17586

² http://www.pepperprint.com/products/human-epitome-microarray/

³ http://meme-suite.org/

⁴ http://www.iedb.org/

⁵ http://www.pepperprint.com/high-content-peptide-microarrays/

⁶ http://www.pepperprint.com/applications/epitope-substitution-scan/